155. Most Complicated Structure in The Universe

22 Mar

I think it is very possible that the human brain is the most complicated and intricate object in the Universe. Of course we don’t know what has developed on other planets, but here on Earth this argument more clearly has merit. My discussion here may convince you of this. I have also written this to show that the brain is so complicated and difficult to study in detail that centuries from now much of it will still remain a mystery. I also want to put to rest notions that we can “download” brain information,  read minds or do much scientific work with large electrode arrays, or construct computers that duplicate brain structure and function. Writers not fully educated in neurophysiology often under-estimate the extreme complexity of the human brain and the impossible difficulty of most cell-interconnection research.

Here is what I learned through my laboratory work and reading the neurophysiology literature for about 50 years. The human brain is composed of billions of nerve cells.  Each cell has connections to many (up to 10,000) other cells. There are perhaps 500 trillion or more interconnections called synapses and gap junctions. Each tiny connection (which functions like some transistor variation) has a complicated and variable structure. Interactions can be digital or analog, and are affected by various hormones and other chemicals. Much of brain functioning involves components that are extremely small, often at the molecular level.

Trying to understand nervous system control points (the logic) when there are, say, 500 trillion units, was rejected by many researchers in favor of starting with simpler systems. For example, Eric Kandel (Nobel prize winner) used the simple nervous system of the mollusk Aplysia, which has a small number of cells. A lot has been learned about cell logic through this type of experimentation. Trying to understand how the human brain works using hundreds of electrodes may have some merit. One problem in working with extremely tiny control points is that it is hard to know exactly where the electrodes are and what you are actually recording from. Also, the electrodes used in the human brain could easily damage the tiny delicate structures. Some cells may have important connections to other distant cells that are not in the electrode array range. Replication would be almost impossible.

When faced with these difficult problems, neurophysiologists have worked successfully (producing valuable info) with various more practical methods. For example, certain brain areas, such as those directly connected to sensory input, are more easily studied. The sensory nerves can be monitored for electrical activity, and the closely associated brain cells can be studied with electrodes, especially in certain animals. The same goes for brain areas closely associated with motor output.

A lot of recent brain research has been done with MRI scans and with EEG (brain waves).  Certain types of conclusions can be drawn from this type of work, but it does not tell us much about the 500 trillion control points.

There are structures and processes in nature that we may never fully understand — like dark energy and black holes.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: